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The interference of passive thermal fields produced by two (and more) line sources 
in decaying grid turbulence is studied by using the inference method described by 
Warhaft (1981) to  determine the cross-correlation coefficient p between the tem- 
perature fluctuations produced by the sources. The evolution of p as a function of 
downstream distance, for 0.075 < d / l  < 10, where d is the wire spacing and 1 is the 
integral lengthscale of the turbulence, is determined for a pair of sources located at 
various distances from the grid. It is found that p may be positive or negative (thereby 
enhancing or diminishing the total temperature variance) depending on the line-source 
spacing, their location from the grid and the position of measurement. It is also shown 
that the effects of a mandoline (Warhaft & Lumley 1978) may be idealized as the 
interference of thermal fields produced by a number of line sources. Thus new light 
is shed on the rate of decay of scalar-variance dissipation. The thermal field of a single 
line source is also examined in detail, and these results are compared with other recent 
measurements. 

1. Introduction 
Despite the desirability of being able to predict how a passive scalar contaminant 

such as heat, moisture or chemical species is transported and mixed in a turbulent 
flow field, the problem still remains unsolved from a fundamental viewpoint, even 
if the turbulent field is completely specified. The difficulty stems in part from the way 
the scalar is introduced into the flow; in any realistic problem the scalar field is 
initiated (be i t  from a point or a distributed source) a t  a scale vastly different from 
that of the turbulence. 

One of the simplest ways of injecting a scalar into a turbulent field is by means 
of placing a fine heated wire in the flow. If the wire is fine enough and if the wire 
overheat is small enough neither the wire’s physical presence nor the resultant 
thermal wake will change the background velocity field, i.e. the resultant scalar field 
will be a passive contaminant. The first detailed theoretical study of this problem 
appears to have been done by Taylor (1935) (see also Taylor 1921), yet after nearly 
fifty years of research, accurate theoretical understanding of how the mean and 
variance (not to mention higher-order moments) of the thermal field evolves has not 
been achieved (for a summary of previous theoretical and experimental work on this 
subject see Hinze 1975). Very recently, however, such theoretical tools as two-particle 
dispersion theory (Durbin 1980; Lundgren 1981 ; Sawford 1983 ; Sawford & Hunt 
1983) and the joint probability density function (p.d.f.) approach (Anand & Pope 
1983) have shed new light on this problem. Important experiments concerning the 
spreading rate of both the mean and fluctuating thermal field for a line source have 
been carried out by Uberoi & Corrsin (1953) and by Townscnd (1954). although 
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information on how the thermal field behaves very close to the source has only been 
obtained recently (Stapountzis et al. 1984). 

The superposition of two or more passive thermal wakes downstream of parallel 
line sources is an  important and non-trivial extension of the case of a single source. 
The way these line sources mix will he a function of their spacing and the lengthscale 
and intensity of the turbulence. Experimental knowledge of this mixing is important 
in testing two-particle dispersion theories. Furthermore, a study of the superposition 
of multiple line sources should provide deeper insight into the problem of scalar 
variance dissipation : the mandoline used by Warhaft & Lumley (1978) consists of 
an array of parallel wires, and the non-unique value of the scalar dissipation rate 
observed in that study was due to variations in the spacing (and downstream location 
from the grid) of the mandoline wires. Knowledge of the superposition of multiple 
sources also has practical application in such diverse areas as heat exchangers, the 
feeding of chemical reactants into a turbulent mixer, the mixing of multiple plumes 
from industrial effluent, and mixing (of CO, or 0,) above plant or crop canopies. 

If we consider two line sources located in a turbulent flow (decaying grid turbulence 
for the situation to be studied here) the resultant temperature variance will be 

- 
e; = (o,+o,)~ = q + ~ + 2 ~ ( q ) : ( ~ ) : ,  (1) 

where 0, and 8, are the thermal fluctuations produced by each wire and p is the 
cross-correlation coefficient between the fluctuations produced by each wire. Warhaft 
(1981) has shown (for two distributed line sources) that  p may be inferred by operating 
each thermal source separately (thus determining and E) and then both together 
(determining z). Equation ( I )  may then be solved for p. Here this inference method 
is used to study the interference of two parallel line sources placed in a plane, parallel 
to and downstream from the grid (figure l).t 

Equation ( 1 )  can also be extended to examine the interference of multiple line 
sources. Here the relation for the temperature variance is 

( 2 )  

Equation ( 2 )  shows that for a mandoline (a parallel array of heated wires evenly 
spaced across the tunnel) the evolution of the temperature variance is solely a 
function of the temperature variance of each wire and pab. The interference of 
multiple line sources is also described here. 

The outline of the paper is as follows. First, the evolution of the mean and variance 
of the thermal field downstream of a single line source is examined. These results 
supplement the recent work of Stapountzis et al. (1984), although here the distance 

t We use the term interference for the variance field (equation 1) in the same sense tha t  it is used 
in linear wave theory where destructive or constructive interference may occur depending on the 
phase relation of the two superposed waves. The cross-correlation coefficient p in equation (1) may 
be positive or negative, thereby enhancing the value of (constructive interference) or reducing 
i t  (destructive interference). Of course no mechanical interference occurs, since the thermal fields 
are passive and the line sources do not affect the velocity field. Frequently throughout this paper 
we will use the expression ‘interference of line sources’; it  should be understood to be the 
interference of the thermal fields produced by the line sources that  is being addressed. Note also 
tha t  the equation for the total (mean-squared) temperature field is 

2-p - 1 - 1  - 
1 + 0; . . . + 2p,, (qp (S,)2 + 2p1, (q): (g): + . . . . 

[(q + 8,) + (G + S,)]~ = !q + 5q + 2!4 T, +q +% + 2 8 , ,  (1‘) 

where T is the mean temperature. Information concerning the first five terms on the right-hand 
side of (1’) could be obtained from one wire only. It is the final term, the covariance of the 
temperature fluctuations (and its associated cross-correlation coefficient p = 8 , 0 , / ( 8 ~ ) ~  (%)$) tha t  
is of singular importance in the interference process. 

_ _ _  
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FIGURE 1. Sketch of wind tunnel showing two heated wires. When two or more heated wires are 
used the transverse direction y (through which the probe is moved) is measured from the midpoint 
between the two central wires. For experiments with one wire only (figures 4 to 12) the transvwsp 
direction y’ is measured from the wire itself. 

of the line source from the grid is varied and new results are also described for the 
thermal field very far downstream from the source. Secondly, extensive measurements 
of the interference of two line sources are presented. For this experiment the distance 
of the sources from the grid (x,,, figure 1) and the wire spacing d are varied in a 
systematic way. Thirdly, experiments on the interference of multiple line sources are 
described, and these results are discussed in terms of the previous mandolinc 
experiments of Warhaft & Lumley (1978). Although the present approach appears to 
be new, an interesting experiment by Kistler (1954) bears some relation to  the work 
described here. I n  that experiment Kistler studied the joint p.d.f. of two line sources 
in grid turbulence; however, the inference method, which is the basis of the work to 
be described here, was not employed to determine the correlation between the two 
sources. 

2. Apparatus 
The open-circuit wind tunnel was the same as that used in our previous studies 

(Warhaft 1981; Sirivat & Warhaft 1983). The mesh length M of the biplane 
turbulence-generating grid was 0.025 m and the grid bars were 0.476 cm square- 
sectioned, giving a grid solidity of 0.34. The tunnel test section was 170M long and 
16M x 16M in cross-section. The walls of the tunnel were slightly divergent to ensure 
a constant centreline mean speed with the development of the boundary layer. The 
mean wind speed was 7 m/s for all experiments to  be described here. 

The thermal line sources were nichrome wires of 0.127 mni diameter (and for some 
experiments 0.207 mm diameter). Thus the (cold) wire Reynolds number R e  was 57 
(and sometimes 91). Note that, when the wires are heated, R e ,  based on the viscosity 
of the air film surrounding the wire, is considerably reduced. However, close to the 
source some disturbance to  the velocity field due to these wires was observed. Hence 
for the study of the thermal field < 8M from the source, 0.025 mm diameter 
platinum wire was used. Low heating current (100 mA) was also used so as not to 
affect the flow field by thermal means near to the wire. For this case the cold wire 
Re was 11. For x‘/M greater than about 10, where x’ is the distance from the thermaI 
source (placed a t  xo) (figure 1) i t  will be shown below that the thermal-variance 
evolution is independent of the wire diameter for (at least) the Reynolds-number 
range 3S280. Small springs were placed in tension between the ends of Lhe thicker 
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(0.127 mm and 0.207 mm) wires and the tunnel wall in order to prevent sagging when 
these wires were heated. For the fine (0.025 mm) wire, sagging was prevented by 
placing small weights on each end of the wire after i t  had been threaded through small 
holes in the tunnel wall. 

The mean temperature was measured by a 7.62 x lop5 m diameter chromal- 
constantan thermocouple. I n  order to compensate for variations in room temperature, 
the reference of the thermocouple was placed in the wind tunnel but well away from 
the thermal field produced by the line source. Thus effects of variation in background 
temperature were subtracted out. Temperature fluctuations were measured with a 
1.27 pm platinum wire with length-to-diameter ratio L I D  = 400 for the etched 
portion of the wire. The total length of the wire was 3L, thus alleviating much of 
the probe prong-wire intcraction effect recently described by Paranthoen, Petit & 
Lecordier (1982). The fast-response a.c. temperature bridge was the same as that used 
hy Warhaft & Lumley (1978). Particular care was taken to  align the sensing wires 
of the thermocouple and fast response resistance thermometer parallel to the heated 
line source when measuring close to the source in order to avoid resolution problems. 
Measurements of temperature fluctuations in the 'cold' flow revealed that the r.m.s. 
noise level (combined electrical and tunnel) was approximately 5 x lop3 "C. The tem- 
perature variance measurements were corrected for this noise under the assumption 
of zero correlation between the signal and noise fluctuations. Velocity fluctuations 
were measured by means of DISA type 55M constant-temperature bridges. The u 
(longitudinal velocity) and v (lateral velocity) components were measured with a 90" 
X-wire array, LID = 200. The wires were 3.1 pm tungsten and the wire overheat was 
1.8. Some confirmatory measurements of the longitudinal variance decay were done 
with a single hot wire. 

The thermal field was scanned in the transverse direction by means of a precision 
traversing mechanism and stepping motor with minimum stepping increments of 
5 x lop5 in. (1.27 x m). 

3. The results 
3.1. The velocity field 

The decay of zz and v", the longitudinal and transverse mean-square velocity 
fluctuations, is shown in figure 2. The normalized variance decay laws deduced from 

where the mean velocity TJ = 7 m/s. Various parameters of the velocity field are 
listed in table 1 .  Figure 3 shows u- and v-spectra a t  x / M  = 52 and 103. From such 
spectra, 3-dimensional spectra were derived under the assumption of isotropy 
(Tennekes & Lumley 1972, chap. 8). The peaks of these spectra (not shown here) were 
at approximately E = 1.31-1 (m-l), where I is the turbulence integral scale deduced 
from the velocity decay law (table 1) .  The peaks of these spectra are also listed in 
table 1 for various downstream locations. 

3.2.  Single line Source 

The results for the single line source were obtained primarily to provide background 
for the multiple line source interference study to follow. However, a number of new 
results for a single line source have been obtained in this study and hence the results 
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FIGURE 2. The decay of the longitudinal velocity variance 2 and the cross-stream variance 3: 
x , ;El"/u"; a / U 2 .  See also table 1. 

XlM 

20 52 60 

r.m.s. u (m/s) 0.299 0.153 0.139 

E = -$(dG/dt) (m2/s3) 2.63 0.265 0.188 
z = @$/e (m) 1.02 x 1.35 x 1.43 x 1W2 
Peak of 3-dimensional velocity 98.5 87.4 

r.m.s. 'u (m/s) 0.267 0.142 0.129 

spectrum (m-l) ( x / M  = 63) 
A, = (15u;El"/e)$ (m) 2.86 x 10-3 4.60 x 10-3 4.97 x 10-3 
7 = (u3/e)' (m) 1.99 x 10-4 3.53 x 10-4 3.84 x 10-4 

Re,, = @,/u 53 44 43 
7% = 3U2/€ ( s )  0.102 0.265 0.308 

7/1 1.95 x 2.61 x 2.69 x 
Re, = u l / u  191 129 124 

100 

0.097 
0.092 
5.53 x 10-2 
1.65 x 
81.8 
( x / M  = 103) 
6.39 x 10-3 
5.22 x 10-4 
3.16 x lop2 
100 
39 
0.510 

TABLE 1. Some characteristics of the velocity field. Re, (= U M / v )  was 1.09 x lo4 for all 
experiments; U = 7 m/s, v = 1.6 x mz/s and M = 0.025 m. 

are documented in considerable detail. During the course of this work the results of 
an experiment by Stapountzis et al. (1984) appeared. These measurements, which are 
more detailed than those of the previous measurements of a thermal line source by 
Uberoi & Corrsin (1953) and Townsend (1954), will be compared with the present 
results. 

The development of the mein thermal wake in isotropic turbulence is generally 
divided into three stages : molecular diffusive, turbulent convective and finally 
turbulent diffusive (e.g. Stapountzis et al. 1984; Anand & Pope 1983). For the 
molecular-diffusive range ( t  + K/G, where K is the thermal diffusivity) the spreading 
of the mean profile (based on its standard deviation urn or half-width) increases as 
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FIGURE 3. One-dimensional spectra of u and v at x / M  = 52 and 103. 

ti: grn = ( 2 ~ t ) ; .  For the turbulent-convective range (K/? -4 t 4 t ,  where t, is the 
Lagrangian timescale) the spreading rate is linear: urn = ( 2 ) a t .  Finally, for the 
turbulent-diffusive range ( t  & t L )  dg&/dt cc KT (where KT is the turbulent diffusivity), 
i.e. vrn K ti(2-n) for grid turbulence. Here n is the decay exponent of 2. For n = 1.32 
((4) above) vrn cc Recently Anand &  pop^ (1983) have derived a quantitative 
relation, based on the probability-density-function method of Pope (1981) for all three 
stages of the evolution of vrn. Their prediction will be compared with the present 
results. 

Figure 4 shows the evolution of the mean centreline temperature, as well as the 
half-width of the mean profile, for a single wire placed a t  xo /M = 52. The mean 
profiles (not shown) were Gaussian; their half-width is defined as half the width of 
the profile when its level is 50% of the maximum (centreline) value. The standard 
deviation for a Gaussian profile is 0.849 times,the half-width. The ordinate y ' /M refers 
to the lateral distance from the line source (figure 1) .  In  order not to  affect the velocity 
field close to the source, the fine (0.025 mm) wire was used for measurements up to 
and including x ' / M  = 8.1. In  order to produce a larger temperature signal further 
downstream, the thicker wire (0.127 mm) was used for x ' /M 2 8.1. The power in the 
fine wire was 4.4 W/m, that in the thicker wire was 45 W/m. The curves match well. 
Note that the product of the half-width and the peak (centreline) temperature should 
be constant for a particular wire heating, as is observed. Also shown on figure 4(a )  
is the relation (y'/M); = 1.18((2)3/U) ( x ' / M ) ,  where (y' /M)a is the half-width of the 
mean profile. This is equivalent to vrn = ((2)4/ U )  x' for a Gaussian profile and is the 
relation for the spreading of the mean-temperature profile in the convective range. 
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FIGURE 4. Half-width of the mean temperature wake behind a single wire (left-hand axis) and 
centreline (peak) temperature of the mean temperature profile (right-hand axis) : ( a )  x’/ M < 8.1, 
0.025 mm heated wire; ( b )  x’/M > 8, 0.127 mm wire. Open circles are for peak temperature, filled 
circles and crosses are for the half-width. ( a )  also shows the line (y’/M)+ = 1.18 ((g)+/U) (z’ /M) .  

It appears that the linear (convective) region extends to about 8M from the source. 
After that  turbulent diffusion begins to become more important and the spreading 
rate is less rapid (figure 4 ( b )  and figure 10 below). 

Figure 5 shows the evolution of the half-width of the mean profiles for two other 
locations of the line source, x o / M  = 20 and x o / M  = 60. As would be expected, the 
closer to  the grid the line source is placed (where the turbulcnce intensity is greater), 
the more rapid is the spreading rate of the mean profile. The form of the curves of 
figure 5 and the method of scaling them will be discussed below. 

The downstream development of the r.m.s. @profiles, normalized by their centreline 
values, is shown in figure 6. As for the mean profiles, the 0.025 mm wire was used 
up to and including the distance x’/M = 8.1 from the source, thereafter the 0.127 mm 
wire was used. Notice that until approximately x ’ / M  = 1.8 the r.m.s. profiles are 
double-peaked. This is presumably because near the source fluctuations are produced 
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FIQURE 5. Half-width of the mean-temperature wake for the 0.127 mm wire placed at 
x,/M = 20 (filled circles); x,/M = 52 (open circles); xo/N = 60 (crosses). 

FIQURE 5. Half-width of the mean-temperature wake for the 0.127 mm wire placed at 
x,/M = 20 (filled circles); x,/M = 52 (open circles); xo/N = 60 (crosses). 

mainly by the bulk flapping of the wake, with little contribution from structure within 
it. Thus the largest gradients in temperature, and hence the highest values of r.m.s. 
0 will occur off the centreline, producing the double peak. The same effect was 
observed by Stapountzis et al. (1983) (see also Sawford 1984). After about x ' /M = 1.8 
the profiles become single-peaked. The ratio of the maximum value of r.m.s. # to its 
centreline value, as a function of x ' / M ,  is in agreement with the measurements of 
Stapountzis et al. (1984) (see figure 8 of their paper). 

When the thermal line source was placed closer to the grid, the double peak in the 
r.m.s. #-profile re-emerged far downstream. Figure 7 shows r.m.s. @-profiles for the 
thermal source a t  x,/M = 20. At x ' / M  = 17 the profile is single-peaked (as for the 
case where the source was placed at x o / M  = 52, figure 6). However, by x ' / M  = 63 
a double peak has emerged and this is more pronounced by x ' / M  = 133. The 
re-emergence of the double peak does not appear to have been observed before by 
other workers owing to  the limited downstream extent of their measurements. An 
explanation of this is wanting. Double peaks in the r.m.s. &profiles also re-emerged 
far downstream when the source was placed a t  x,/M = 5. 

The evolution of the ratio of the r.m.s. 0 to the mean temperature T for the line 
source a t  x,/M = 52 is shown in figure 8(a) .  The peak of r.m.s. #/T is a t  about 
x ' /M = 10, i.e. approximately a t  the end of the linear spreading region. Thereafter 
i t  appears to asymptote to a value of approximately 0.7. This final value is consistent 
with the observations of Uberoi & Corrsin (1953). Also plotted on the graph is the 
recent data of Stapountzis et al. Their values appear to be lower than ours for 
x ' /M > 2. The peak does not appear in their work, but this may be due t o  
insufficiency of their data points. The final value of r.m.s. #/T for their data was 0.5 
a t  x ' /M = 14.7. Figure 8 ( b )  shows the evolution of the half-width (50% of the 
centreline value) of the r.m.s. 8 profiles of figure 6. Notice that the results for the 
fine wire match well with those ofthe thicker wire. The half-width ofthe r.m.s. #-profiles 
are considerably larger than the half-width of the mean profiles; the ratio is 
approximately 1.5. Thus the half-width of e" is approximately the same as that of 
T since the half-width of 8" is approximately 44 that  of (p)?. These results are in 
__ conformity with those of Stapountzis et al. (1984). We note also that, although the 
O2 profiles are non-Gaussian (figures 6 and 7) ,  profiles of the total mean-squared 
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FIQURE 6. R.m.s. temperature profiles normalized by the centreline r.m.s. values. The wire was a t  
x o / M  = 52. For measurements up to and including x ' / M  = 8.1, the 0.025 mm wire was used, 
thereafter the 0.127 mm wire was used. 

temperature field T2 + @ (not shown here but easily constructed from the mean and 
r.m.s. profiles) were found to be Gaussian. This is also in accordance with the recent 
findings of Stapountzis et al. 

Figure 9 shows the development of the r.m.s. half-width for the wire placed a t  
x , / M  = 5 ,  20, 52 and 60. As for the mean profiles (figure 5), the closer the source is 
to the grid, the faster is the spreading rate. 

The downstream development of the half-width of the mean and r.m.s. profiles of 
figures 5 ,  8 ( b )  and 9 are summarized in figure 10. The half-widths of the profiles have 
been normalized by the integral scale a t  the location of the line source (table 1) and 
the distance downstream from the source has been normalized by the distance of the 
source from the grid. This scaling is suggested by Anand &  pope'^ (1983) modelling 
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FIQURE 7 .  R.m.s. temperature profiles for the (0.127 mm) wire placed a t  x,/M = 20. 

FIGURE 8. (a )  R.m.s. @/mean T, centreline values. For clarity the horizontal axis has also been 
amplified tenfold (dashed line) for the data points up to and including x ' / M  = 8.1. The data of 
Stapountzis et al. (1984) (open circles) are also shown on this amplified scale. ( b )  R.m.s. &profile 
half-width (based on centreline value). The wire was a t  x , / M  = 52 for both (a )  and (b ) .  

of a thermal wake and collapses the data taken at various xo /M remarkably well. 
The Anand & Pope prediction for the mean-profile half-width, based on a conditional 
p.d.f. method (Pope 1981) is also shown on the graph. One adjustable constant (taken 
from the data) was used in their prediction. The fit to the data is excellent. Notice 
that even far downstream the diffusive range (where the slope of the curve should 
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FIGURE 9. Half-width of the r.m.s. 0 profiles for the wire at  x o / M  = 5, 20, 52 and 60. 
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FIGURE 10. Normalized half-width of the mean-temperature profiles (left-hand curve) and r.m.s. 
temperature profiles (right-hand curve). The symbols (for the location of the source) for both the 
mean and r.m.s. profiles are the same as those used in figure 9. (The mean profiles were not measured 
for the wire placed at  x,/M = 5.) The open squares show the data (for the mean half-width) of 
Stapountzis et al. (1984). The dashed line is the prediction of Anand & Pope (1983). 

be 0.34) is not reached. Also plotted on this graph are the recent data for the mean 
profiles of Stapountzis et al. (1984). Their values agree well with the present 
measurements. (The point closest to the wire of the Stapountzis et al. measurements 
(figure 10) suggests a slope less than 0.5, which is a t  variance with the scaling theory 
for the molecular-diffusive range. It is possible that resolution problems occurred in 
their measurements here.) The evolution of the r.m.s. 0 half-width is also shown on 
figure 10. As for the mean half-width the collapse of the data is remarkably good for 
the line source placed a t  xo /M = 5, 20, 52 and 60. 

I n  order to check,whether there was any dependence of wire (source) diameter on 
the evolution of the r.m.s. 0 ,  a number of experiments were carried out with wires 
of different diameter, and with the tunnel operating a t  different speeds. Figure 11 
shows r.m.s 0-profiles for the source a t  xo /M = 20. For the wire Reynolds number 
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FIGURE 11 .  R.m.s. @profiles normalized by the centreline value for the wire placed at x o / M  = 20: 
0 ,  Re = 39 (wire diameter = 0.127 mm, U = 4.8 m/s);  +, Re = 175 (wire diameter = 0.32 mm, 
U = 8.5 m/s) ; x , Re = 280 (wire diameter = 0.51 mm, U = 8.5 m/s). 
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FIGURE 12. R.m.s. O/mean T (centreline values) for the 0.127 mm wire 
placed at x o / M  = 20, 52 and 60. 

varying from 39 to 280 there is virtually no difference in the profiles. This is consistent 
with the recent analysis of Sawford & Hunt (1983), who find that source size 
dependence occurs for d 9 T,I. Such a test was not carried out very close to the source 
because there vortex shedding would have affected the velocity field, thereby altering 
the nature of the experiment which was to study a passive scalar. 

Finally, the ratio r.m.s. BIT is shown (figure 12) for the source placed at x,/M = 20 
and x , /M = 60, as well as a t  x o / M  = 52 (figure 8). For all positionings of the sources 
the value tends to asymptote to about 0.7. 

3.3. The interference of two line sources 

Extensive measurements of the interference of two line sources were carried out with 
pairs of wires placed at various downstream locations x, /M and various spacings d 
(figure 1).  First, measurements for the wires spaced at xo/M = 20 will be described. 

Figure 13 (lower curves) shows some examples of r.m.s. &profiles for three different 
wire spacings and for the probe located a t  three different locations from the sources. 
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FIGURE 13. Bottom graphs show r.m.s. 0-profiles for a pair of wires operating separately ( 1  and 2) 
and together (B). Top graphs show p,  inferred from graphs such as the bottom ones, for various 
d and x’ /M.  All horizontal axes are y / M .  Wires are at xa/M = 20. 

The integral scale 1 for x,/M = 20 is listed in table 1 .  Curves 1 and 2 (figure 13, 
lower graphs) are for each wire operating separately, and B is for both wires operating 
together. Note that along the centreline between the two wires there is a dip in curve 
B, since here the interference between the two wires is the strongest. Notice also, for 
x’/M = 133, the two r.m.s. profiles for each wire operating separately also has a dip, 
as discussed in the previous section. From such profiles as these, the upper curves 
of figure 13 were obtained by solving (1  ) for p,  viz 

These curves show the variation of p as the field is traversed in the y-direction for 
a particular value of x’/M. The curves have distinct minima at the points inter- 
mediate between the two wires (y = 0, figure l ) ,  but these minima tend to  become less 
pronounced for small d and large x’ /M,  as would be expected. The width of the curves 
also becomes greater for larger x‘ /M.  From such families of curves figure 14 was 
produced. These correlation coefficients are for the probe location a t  y = 0 and include 
values of d and x’/M not showfi on the upper curves of figures 13. 

The evolution of p is clearly a function of d (or more generally d l l ,  see below). For 
very small d the cross-correlation coefficient rapidly increases from a value that 
appears to  commence a t  - 1, to  a value close to + 1. When the sensor is close to  the 
wires, we would expect p to be negative. This follows if we write 
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FIGURE 14. p versus x‘ /M for experiments such as shown in figure 13. p is for the midpoint between 
the wires (y = 0, figure 1). The numbers are the wire spacing d (mm). The wires are at x o / M  = 20. 

where Y is the total instantaneous temperature T+8. If the plumes never over- 
lap instantaneously Yl Yz = 0 and p < 0. As the wakes begin to merge together 
(increasing x’) p rises to a value of + 1 (when the wakes are completely mixed). As 
d is increased (e.g. d = 4 mm) this merging process occurs a t  a slower rate. For large 
d (the effect is clear for d > 8 mm), p first decreases and then begins to increase. For 
these cases the sensor may initially sample one wake or the other (but not both). 
However, it will mainly be sampling ambient air and p will be close to zero. As the 
two wakes begin to broaden (i.e. as x’/M increases) less of the time will be spent 
sampling ambient air and the negative correlation will build up. However, mixing 
of the two wakes will also begin to occur and this has the effect of reversing the 
negative trend in p ;  the mixing will drive p in the positive direction as for the small-d 
case. Notice that for d > 50 mm only the initial decrease in p is observed. Also, for 
these larger d,  no meaningful value of p could be determined for small x’/M since 
the wakes did not cross the centreline. Of course, even for very small d ,  p should also 
first decrease and then increase as x’/M increases. Figure 15 shows p as a function 
of x‘/M for small values of x‘/M with d = 1 mm. Here the 0.025 mm wires were used 
and they were placed at xo/M = 52. For x’/M < 1 p does not indeed appear to be 
asymptoting to - 1 but shows the beginnings of the reversal exhibited for larger d. 
The cross-correlation coefficient was not measured for x‘/M < 0.36. The minimum 
value for p is around -0.9 for the close wire spacing of figure 15, whereas for the 
larger wire spacing i t  is closer to -0.7 (figure 14). This is because for small d the wakes 
are being flapped in synchronism (in the convective range), whereas for larger d (and 
thus larger d/Z) the wakes are less synchronous (and thus there will always be pockets 
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FIGURE 15. p(y = 0) as a function of x ’ / M  for the 0.025 mm wires 
spaced 1 mm apart a t  z,/M = 52. 

of ambient air between them) since they are affected by different parts of the velocity 
field. t 

The effect of varying d but holding the probe a t  a particular downstream location 
is shown in figure 16(a), which is a replot of figure 14. Also shown in figure 16 is p 
as a function of d for the wire pairs placed a t  xo/M = 5 and 60. As the wire separation 
is increased, p decreases from its initial value near unity; however, this trend reverses 
for large separation, for the reason described above. Note that, as x’/M decreases, the 
reversal occurs for smaller d as would be expected. None of the curves of figure 16 
achieve a value of p = 1 for large x’/M as d + 0. (This is also apparent from figure 14.) 
The reason for this is unclear. (We note that the reproducibility of the results was 
extremely good; on repeated experiments p varied only by about f0.03 for a 
particular x’/M and d . )  The results of figure 16 also suggest that p tends to zero for 
large d .  For this case the wire samples one wake or the other, but most of the time 
it is sampling ambient air. 

For the fine wires used in this experiment the evolution of p is independent of wire 
diameter and is a function of u / U ,  1, d and x’ only. For the experiments described 
here all of these parameters were varied. Figure 17 summarizes the results of these 
experiments. Most of the measurements were done for xo/M = 5,20 and 60, with less 
extensive measurements for xo/M = 42 and 52.  The two dimensionless variables 
chosen have been d / l  and (x’ ld)  ( u / U ) .  The latter variable may be thought of as the 
time to the probe x’/ U non-dimensionalized by the lateral convective timescale d / u .  
Strictly d /v  should have been used for this latter timescale, but the turbulence is 
close to isotropic and u is only a few percent different from u (table 1) .  Furthermore, 
sine the turbulence is decaying this convective timescale should be an integrated value 

t If the instantaneous wakes could be represented by rectangular profiles, then a minimum value 
of p = - 1 would occur when the probe senses one wake or the other but not both a t  the same time 
nor ambient air, i.e. when they are flapped over small angles in synchronism (the case of small d 
and close to the wires). In  fact, close to the wires, the instantaneous profiles are Gaussian, and 
therefore even for synchronous flapping over a small angle with no ambient air between the wakes 
p will not equal - 1, because of the nonlinear profile of the wakes: an increase in temperature from 
one wake will not correspond to precisely an equivalent decrease from the other. However the 
departure from perfect anticorrelation appears to be small (figure 15). 
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FIGURE 16(a ,b ) .  For caption see facing page. 
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FIGURE 16. (a )  Replot of figure 14. p versus d for various values of x ‘ / M  (labelled on the graph). 
(b )  and (c) same as (a) but for the wires at x , / M  = 5 ( b )  and x , / M  = 60 ( c ) .  

of u from the source to the probe location. Nevertheless, using this simple scaling 
the data of figure 17 collapse remarkably well, even for the source location at 
x , /M = 5 where the turbulence is far from homogeneous. The trend of the curves is 
similar to those of figure 14. 

It is unfortunate that the nature of the evolution of p prevents us from determining 
its large-t asymptotic value (as a function of d / l )  despite the relatively long 
downstream extent of our measurements. This is particularly so for large d/Z (figure 
176).  Even for small d / l ,  while the curves of figure 17(a)  suggests p may be 
asymptoting to + 1 far downstream, the alternative plots of figure 16 indicate that 
p does not appear to approach this limit, as is noted in the previous paragraph. 

Figure 18 shows 1 + p  as a function of d/Z for a number of values of ( z ’ l d )  (u/ V ) .  
Various regimes are clearly apparent from this plot. Consider, first, moderate 
normalized times from the source ( (x ’ ld)  ( u / U )  = 2 and 4, figure 18) .  There are three 
distinct regions. For d/Z less than approximately 0.7,  1 + p  decreases relatively slowly 
as a function of d/E. The slope also decreases as (z ’ /d )  ( u / U )  is increased from 2 to  
10. Unfortunately there is no inertial subrange for these relatively low-Reynolds- 
number experiments (figure 3), and the condition 7 4 d 4 1 is not met. Thus the 
inertial-subrange model of Durbin (1980), which is applicable to this type of problem, 
cannot be tested in its present form from these measurements. The second region, 
1 < d/Z < - 7 (figure 18, ( z ’ l d )  ( u / U )  = 2 , 4  and 5 )  shows a much more rapid decrease 
of 1 + p .  Possibly this is a diffusive range, but it will require detailed analysis to predict 
the form of 1 +p for this region. Thirdly, the trend in the curves reverses for large 
d / l .  This is the region in which the wakes from the individual curves have not yet 

13 B L M  144 



380 2. Warhaf t 

(x ' ld)  (ulW 
0 10 20 30 

o,8 r w U  1 I dll=0.015 1 

- - 
30 
1 
ill = 0.2 

(x ' ld)  (ulW 
0 10 20 30 

1 I 1 
0 dll=0.015 

L 

A x o / M = 5  

0 10 20 
0.81 1 1 

0 
P 

-0.4 

-0.8 
0 10 20 

x' u 
d U  
- -  

FIQURE 17. p versus normalized (convective) time ( x ' / d )  (u/  U )  for pairs ofwires located at x , / M  = 5, 
20, 42, 52 and 60. 1 is calculated at the x , / M  location of the wires. (a)  d / l  varying from 0.075 to 
1 ; ( b )  d /1  varying from 2 to 10. 
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merged and mixed. For small ( z ’ l d )  ( u / U )  (two upper curves of figure 18) this regime 
begins to occur much earlier, as would be expected, because of the short (non- 
dimensionalized) time from the probe. 

A linear-log plot of p versus d/E also reveals the same three regions as figure 18. 

3.4. The interference of multiple line sources 

As stated in $1, one of the objectives of this experiment was to gain a greater 
understanding of the dissipation of scalar variance in homogeneous turbulence. In  a 
previous experiment Warhaft & Lumley (1978) injected the scalar field into decaying 
grid turbulence by means of a mandoline, a set of equally spaced parallel line sources 
located downstream of the grid. Previous to that experiment heated grids had been 
used to study scalar variance decay, with ambiguous results (Warhaft & Lumley 
1978). By changing the spacing of the mandoline wires, or by changing the distance 
from the grid that the mandoline was situated, Warhaft & Lumley showed that the 
scale of the scalar field was altered relative to that of the velocity field. As this 
lengthscale ratio was altered, so, it  was found, was the rate of scalar-variance decay, 
and hence the rate of dissipation of scalar variance. Thus the scalar dissipation rate 
was directly related to the relative scales of the scalar and velocity field. Implicit in 
that study was the notion that the scalar field became homogeneous relatively quickly 
in the decaying, homogeneous turbulence. We will show here that the scalar variance 
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F~GURE 19. Top graph shows r.m.s. 8-profiles measured at x ' / M  = 63 for various combinations of 
four heated wires (labelled on the graph) spaced 1 Mapart and located a t  x , /M = 20. The transverse 
locations of the wires are y / M  = - 1.5, -0.5, +0.5 and + 1.5. Left-hand axis is for the various 
combinations (wire 2+wire 3, etc.), right-hand axis is for the r.m.8. profiles of each wire (1, 2 ,  3 
and 4) operating separately. Bottom graph shows p inferred from the top graph. Dots, pairs of wires 
1M apart (wires 1 and 2, 2 and 3 ,  3 and 4) ;  triangles, pairs 2M apart (wires 1 and 3, 2 and 4) 
open circles, the pair of wires 1 and 4 (3M apart). 

produced by the mandoline may be thought of in an entirely different way: its 
magnitude and rate of decay can be viewed as due to the interference of multiple line 
sources. , 

Figure 19(a) shows the individual r.m.s. @profiles for four line sources located a t  
x,/M = 20, with wire spacing 1M apart. Also shown in the figure is the effect of 
operating the line sources in various combinations, as well as the value of r.m.s. 8 
if no interference were present (p = 0, equation 1) .  Note that if extra wires were added 
to the set (placed 1 M apart) for this downstream location (d/M = 63) the centreline 
( y / M  = 0) value of the total r.m.s. 6 would hardly be affected because the spread 
of the r.m.s. 8-profiles would be insufficient to reach y = 0 (consider the addition of 
wire 5 placed a t  y / M  = 2.5 for example). Thus a mandoline, for this x ' / M ,  can be 
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FIGUEE 20. @ decay for a mandoline (wires 1M spacing) a t  x , / M  = 20. Crosses, @ versus x / M ;  
dots, 8” versus x‘ /M.  The circled cross and dot shows the value of @ for only four wires of the 
mandoline operating (figure 19). 

considered as consisting of four interfering wires only. (Closer to the source fewer wires 
will be needed, further away, more). The effect of the interference of the four line 
sources a t  this location is to reduce the total r.m.s. produced by the four individual 
line sources by greater than a factor of two (figure 19a), and hence the variance by 
greater than a factor of four. Figure 19 (b) shows the cross-correlation profiles for the 
data of figure 19(a). The peak values of these curves are, of course, the same as the 
values of p at x’/M = 63 for wire spacings 25,30 and 76 mm ( l M ,  2M and 3 M )  shown 
on figure 14. It is clear from figure 19 that knowledge of p(x’, y) as well as the evolution 
of the r.m.s. of a single wire is sufficient to predict the evolution of the total scalar 
variance since (2) can be solved for this quantity. Note that curves such as figures 
14 and 17 only contain information on p(z’)  along the centreline between the two 
wires. In  order to solve ( Z ) ,  off-centreline values of p must be known, such as those 
shown in figures 13 and 19(b). This is apparent from studying the values of p a t  
y/M = 0, in figure 19(b). However, the curves of figures 14 and 17 clearly show the 
dependence of the centreline p on wire spacing and thus the reason for different decay 
rates of when the mandohne wire spacing, or the distance from the grid of the 
mandoline, is changed. 

Figure 20 shows the decay of82 for a full mandoline (all wires operating). Also shown 
is the value of @ for x’/M = 63 (figure 19a). It is clear that the interference of four 
fields a t  this location produces the samc variance as a full mandoline (i.e. a set of wires 
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FIGURE 21. The decay of temperature variance for a mandoline of 1.69 em wire spacing placed at  
x,/M = 2 (left-hand graph) andx,/M = 44 (right-hand graph) from the grid. M = 0.84 em. Crosses, 
O2 versus x / M ;  dots, @ versus x’/M. 
- 

1M apart for the full cross-section extent of the tunnel). Other examples such as 
shown in figure 19 were examined for the wires a t  different x,/M, and these, giving 
different interference patterns, produced different values of the variance and thus 
different decay rates of the total variance. 

An interesting feature of the curves shown in figures 14 and 16-18 is the relatively 
long period i t  takes for the wakes of two wires to  mix for any wire spacing that is 
an appreciable fraction of the integral scale. In  our previous mandoline studies, the 
streamwise extent of the tunnel was less than 200M. Although this is greater than 
one turbulence turnover time, i t  may be conjectured that,  if the tunnel were longer, 
a trend to  an equilibrium decay rate would be observed. Figure 21 shows measurements 
o f p  done with agrid of M = 0.847 cm, one-third the value used by Warhaft & Lumley 
(1978). Thus the tunnel is effectively extended by a factor of three to nearly 500M. 
A mandoline (of $M wire spacing) was placed a t  x o / M  = 2 and a t  xo /M = 44. Notice 
that there is no tendency for the slope of the curve to equilibrate to a constant value. 
When considered from the viewpoint of interfering line sources this result is not 
surprising in view of the long time it  takes for mixing to occur (figure 17).  We also 
note that the strong dependence of p on wire spacing (figure 17)  explains the difference 
in the results between Warhaft & Lumley (1978) and Sreenivasan et al. (1980). For 
the latter measurements the wire spacing was such that d / l  5 1 ,  while for the former 
d / l  > 1. 
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4. Discussion 
The results pow interesting questions concerning our present notion of scalar 

dissipation. For decaying isotropic turbulence, the rate of decay of the turbulence 
energy = is described by the equation 

au, au, _ -  d? 
dt axj ax5 (6) - -v-- E -8, 

while for an isotropic scalar field the variance decay law is 

The prevailing interpretation of (6) is in terms of the Kolmogorov model; the 
destruction of turbulence energy is due to the cascade of the energy from large to 
small scales, where it is finally converted into internal energy by the viscosity of the 
fluid. By analogy (equation 7) ,  we think of the destruction of scalar variance in a 
similar way (Tennekes & Lumley 1972) : scalar fluctuations introduced a t  large scales 
undergo a cascade to smaller scales where they are finally smeared by molecular 
action. 

The mandoline experiments of Warhaft & Lumley (1978) and the related experi- 
ments of Sreenivasan et al. (1980) have previously been interpreted in this light. For 
a specified wire spacing the thermal field was inserted into the turbulence a t  a 
particular scale or wavenumber and a cascade then ensued to higher wavenumbers 
(or smaller scales) until the thermal diffusivity smeared the fluctuations. As the wire 
spacing was varied so was the input scale (as is shown by temperature spectra 
(Warhaft & Lumley, 1978)). The higher the input wavenumber (and hence the closer 
to the dissipation scale) the scalar was injected, the faster was the variance decay 
rate. Essential to this picture was the assumption that the scalar field was homo- 
geneous. This assumption was believed to be sound from transverse profiles of the 
mean and r.m.s. thermal field (which were flat) and from the nature of the 
temperature spectra. By invoking the assumption of a homogeneous scalar field 
Antonopoulos-Domis (1881) and Herring et al. (1982) were able to reproduce the 
mandoline results using numerical methods. 

The present results show, however, that the mandoline may be considered in a 
different way, i.e. the interference of inhomogeneous line sources. Viewed in this way, 
the simple cascade model is inadequate to describe the results since production and 
advection must also be accounted for in order to predict the evolution of the total 
thermal variance. Alternatively, the present results suggest that the mandoline may 
be considered as producing destructive (and dissipationless) interference between the 
line sources. This interference accounts for the variation in scalar variance destruction 
as the wire spacing is changed. Thus the scalar-variance dissipation is partly due to 
interference and partly due to molecular smearing. 

That these interpretations (homogeneous thermal field us. inhomogeneous inter- 
fering line sources) are consistent with each other, is shown in a previous experiment. 
In Sirivat & Warhaft (1983) a linear temperature gradient was established using 
differentially heated mandoline wires. This experiment can be interpreted as the 
interference of a number of differentially heated line sources, and the results could 
be predicted using information such as that shown in figure 17. In that study a 
completely different method of establishing a linear temperature gradient was also 
used: the gradient was formed in the laminar flow before the grid in the plenum 
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chamber of the tunnel. For this method, the temperature variance was produced 
solely by the interaction of the linear gradient with the grid turbulence. This is close 
to the notion of injecting a homogeneous thermal field into the grid turbulence. Yet 
the results of these two experiments were essentially the same: equilibrium values 
of the thermal length- and timescales obtained using the differentially heated 
mandoline wires were very close to those obtained using the linear temperature profile 
inserted upstream from the grid. This result suggests that although a mandoline may 
(fundamentally) be considered to be composed of interfering inhomogeneous line 
sources it is also compatible with the notion of inserting a homogeneous scalar field 
a t  specified scale. Possibly a two-particle dispersion theory based on the relative 
motion of marked molecules such as that recently developed by Sawford & Hunt 
(1984) or the conditional p.d.f. method of Pope (1981, 1983) will provide further 
insight into the basic problem of what occurs when a scalar is injected into a turbulent 
field. 

5. Conclusions 
The experimental results described here have been concerned with the evolution 

of the mean and variance of the thermal field downstream of single and multiple line 
sources. 

The single-line-source measurements show that  the variance or r.m.8. &profiles 
exhibit a double peak very close to the source and also very far downstream where 
the diffusive region is beginning to prevail. In  between these regions the r.m.s. profile 
is single-peaked. The mean profiles for these experiments were Gaussian at all 
positions. The data for the spreading rate of the mean and r.m.s. profiles collapse well 
using values of the turbulence integral scale measured a t  the source (whose position 
was varied from z o / M  = 5 to z,/M = 60). The trend of the spreading-rate results are 
in good agreement with those of Stapountzis et al. (1984) (which were only done for 
one downstream location of the source). No dependence of the evolution of the 
thermal field on wire Reynolds number was observed for 39 < Re < 280 for moderate- 
to-large distances (x’/M > 8 )  from the source. The dependence on Re close to the 
source was not studied since vortex shedding would have changed the objective of 
the present study which was to study a passive scalar. Thus for measurements very 
close to the source, a very fine wire (Re = 11)  was used. These results matched well 
(at x’/M = 8) with the higher-Re measurements. 

The experiments concerning two and multiple line sources show that the mixing 
of thermal wakes downstream from the sources is a strong function of d / l  and that 
for d / l  of order unity complete mixing of the wakes is not achieved even far 
downstream, It is concluded that the mandoline can be considered as a set of 
interfering thermal fields produced by multiple line sources. This interpretation 
suggests that scalar variance may be considered as being destroyed, in part, by 
(dissipationless) destructive interference ; similar to the interference that occurs in 
wave motion. The results should enable the recent pair-dispersion theories of Durbin 
(1980), Sawford (1983) and Sawford & Hunt (1984) to be tested in detail. 

Finally we note that other scalar fields such as a thermal mixing layer or a linear 
temperature gradient may be considered in terms of multiple-line-source interference. 
Futhermore the method of approach used here could be used to investigate scalar 
mixing in flows other than grid turbulence, such as wakes, jets, etc. The inference 
method can be used in any flow that is statistically stationary. 
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